NanoMech Wins Highly Competitive Department of Energy Grant

NanoMech Inc. has been chosen for an award from the Department of Energy to develop a nano-manufactured drop-in lubricant technology to drastically reduce friction in engine components, in order to help save billions of dollars annually in fuel and maintenance costs.

Friction is one of the important reasons for failure of systems and essential engineering parts used in aerospace, military, and industrial applications. The annual price of friction and wear – material losses and associated energy is estimated to be over $700 billion — 5% to 7% of the United States’ $ 14 trillion gross national product.

NanoMech has devised a proprietary bio-inspired nano-engineered solution using a design procedure with ground-breaking chemistry to produce innovative lubrication under almost all operating conditions including extreme situations.

The nGlide® additive technology invention, in field tests for another use sector, has shown unprecedented developments in performance of grease lubricants by just as much as 1000% that can also safely prolong the life of the Earth’s hydrocarbon supply chain while making machines operate considerably better and longer.

Mr. Neil Canter, the Editor of Tribology and Lubrication Technology Magazine, said of NanoMech’s advanced nGlide® technology, “their mixture of solid lubricant nano-particles with environmentally friendly organic additives supplies an unique set of properties that are not matched by any additive commercially available today.”

“We are honored to receive this acknowledgement and move forward our breakthrough technology, with unprecedented capability, that may raise machine and vehicle operation by enhancing durability and the life of components, while solving the world-wide demand to save fossil fuels.”


Is nanotechnology safe?

Industrial processes that use the skill to work with materials at the molecular and supramolecular levels have been developed by nanotechnologists. They will have exceptional physical and chemical properties, and are promising to drive another industrial revolution, with an apparently limitless variety of uses, from biomedical imaging, drug delivery and therapeutics, to stuff manufacturing, optics, electronics, energy generation and quantum calculation. Nevertheless, the exceptional physicochemical properties of substances also mean they may have unique bioavailabilities and other features which make them potentially hazardous to people.

While the industrial uses of nanoparticles are growing daily, less attention was paid to potential external effects and work-related health and safety (OHS) concerns in workplaces producing and using these particles, or to factors of potential health effects locally at large. There’s an urgent must handle these problems — already many consumer products include substances (eg, makeup, sunscreens, paints and fabrics), and a lot more are in development.

There are significant challenges in discovering the potential human health effects of nanoparticles. Discovering the distribution of nanoparticles within the body presents a challenge for toxicologists, as their size makes visual detection hard, and their chemical makeup may be similar to ubiquitous substances in the body (eg, elemental carbon), that might negate using conventional chemical detection systems.

These properties present many challenges to regulatory agencies in undertaking risk assessment and risk management of nanoparticles and to the medical community. There happen to be several seminal reports commissioned by authorities to summarize the essential environmental and OHS problems that must be addressed in the near future. They urged that differences in the data should be filled in immediately, where vulnerabilities happen to be happening to enable risk assessments to be conducted, starting with work-related scenarios. Nevertheless, some 2 years after, several knowledge gaps remain. Nanotechnology specialists in the US now are actually claiming that, to protect the significant investment in nanotechnologies, 10% of the NNI funding (ie, US$100 million) should be spent on safety and health problems.

Presently, community hazard related to engineered stuff is presumed to be comparatively low, because environmental release and broadscale industrial production have yet to occur. However, as production of nanomaterials expands, the potential for human exposure and adverse health effects can be likely to improve. It’s therefore imperative that appropriate regulatory regimens be set in place as soon as possible to provide acceptable protection for workers and the community. Certainly one of the risks associated with introducing new technologies, while health and safety knowledge differences remain, is a lack of faith in government regulatory systems and the possible triggering of a community backlash. Such opposition to technological innovation has been clear in other sectors (eg, with genetically modified organisms) and could end up being economically devastating for fledgling nanotechnology businesses.

As with any new technology, the security of nanotechnology is always being examined. There’s been some as yet unresolved discussion lately about the possible toxicity of a particular kind of carbon nanotubes (CNTs) — which continues to be related to tissue damage in animal studies. On the other hand, most available data suggest that there’s nothing distinctively noxious about nanoparticles as a category of substances.

The truth is engineered nanoparticles are much less hazardous insecticides used on family pets, than home cleaning products, and over the counter dandruff treatments. Surely, the nanoparticles used as drug carriers for chemotherapeutics are not as hazardous in relation to the drugs they take and are made to take drugs to tumors without damaging organs and tissue that was healthy.

Whether real or perceived, the possible health hazards related to use and the production of fabrics must be carefully examined in order to realize the important advantages that nanotechnology offers society, for example cancer research, diagnostics, and treatment and to improve our comprehension of the area of science.

Jim Phillips testifies at the Hearing for American Manufacturing

Excerpt from Jim Phillips Presentation to the US Hearing for American Manufacturing

While these states that were competitive lost out. Given the monopolistic attempts of China alone to control all the world’s dwindling resources, the U.S. is now at a great danger in not having stuff and rare earth metals that are core to our most important manufactured goods that are essential to our daily lives. Nanoscale engineering is our greatest expectation in providing a means to do more with less in sustainable and astounding methods to keep America secure and the world leader in technology, commerce and defense.

Paradoxically, despite a continuing downturn and unemployment hovering around 8.6 percent, U.S. makers confront a major deficit. A recent study by the Manufacturing Institute and Deloitte found that 5 percent of production jobs remain unfilled just because individuals with the appropriate abilities are unavailable. That translates to 600,000 accessible U.S. occupations.

Not only are services and production interdependent, they can be distributed worldwide. Many goods aren’t any longer designed, made and sold within one state, now. The actions needed to bring an item from concept to consumption are typically performed in different states.

Many producers consider that international competition has made them more productive, more powerful and competitive. Increases in production and productivity, nevertheless, aren’t translating into economic increases that are more wide-ranging.

Also, many U.S. states and localities do too little to bring manufacturing facilities, enforcing complex and time consuming processes on top of national rules to website and construct production facilities. The letting procedure for a manufacturing facility in America might take months, or even years, whereas in some states, the time needed is only less or several weeks.

Many Americans take into consideration making when it comes to merchandise manufacture—humming factories for the transformation of substances into products that are new, essentially bending metal” in operations which are readily sent elsewhere. Nevertheless, now that is making is part of a considerably more sophisticated, high value added and closely integrated world-wide internet.

Consider, by way of example, merchandise platforms are ’sed by NanoMech. We’re developing cutting edge technology that can save billions of dollars across several sectors while drastically raising functionality, and thus, enable more efficient industrial processes. Included in these are:

Lubricant Additives: We’ve developed state-of-the-art nano-lubricant additives that drastically reduce friction in machines to the stage of near zero, and hence deliver energy savings that were outstanding. This work supports multiple industrial sectors including wind turbines, complex machining, gasoline and petroleum transport, heavy machines, transportation, and others.
It improves productivity although it’s not an option for machining hardened steels. By means of this initiation, the firm in addition has developed tactical understand how in ultra quick coating of nanoparticles for various applications like machining, wear resistant surfaces, and anti-corrosion.

Manufacturing for Security and Sustainable Products: NanoMech has developed additives for polymers, material, and wood-polymer complexes for providing security and sustainability. For instance, NanoMech is supplying an antimicrobial coating for use in the food industries along with for armour vests for defense systems.

Metal Nanopowders: Alloys are a strategic commodity for America. Nanoparticles of metals enable us to provide “more worth for less use.” We’ve got the skill to generate big amounts of metal nanopowders including rare earths for example lithium, silver, nickel, and copper -indium alloy, aluminum, selenium and others. These substances are strategic and vital for multiple U.S. sectors including energy, aerospace propulsion, electronic equipment, and agriculture.

A comprehensive collection of government polices both national and foreign have significant impacts on the creation and initiation process, from research funding to market accessibility to taxes. At Present, U.S. policies aren’t aligned with the total life cycle view of invention that contains creation at scale.

Business models and the policies, plans, strategies that worked in the past are not adequate to ensure America’s future in the nano and digital age. Business, authorities, labour and academic leaders must rethink and retool the country’s company surroundings address several shortcomings and to capture appearing chances. The leveling effects of globalization are reducing the lost price advantages offered in markets that are emerging and possibly opening the door to increased making in America.

Read Full Testimony

Tufftek Coatings to the Rescue

The use of increasingly hard substances in new products in multiple industries is driving a powerful dependence on the development of higher performance cutting tools that can economically machine these. Among the toughest metals on the planet and used for everything from drill bits to touch screens is Tungsten. Much of the increased demand is coming from China, which only happens to hold the world’s largest reservations. Mineral resources are being hoarded by the state as it makes more of its precision tools using the metal and reducing exports.

Cutting Tool Coatings

As the hardest known substance, diamond has many exceptional physical properties which make it a perfect material for cutting tool coating applications. Diamonds have exceptionally high thermal conductivity which removes damaging heat in the cutting edge and are incredibly abrasion resistant. The second hardest material, cubic boron nitride (CBN), is seen as the best coating alternative. CBN provides excellent thermal stability, high abrasive wear resistance, and also can be used for cutting ferrous alloys. Yet in days gone by it’s always demonstrated a challenge to master CBN coatings. An Arkansas company, NanoMech, has managed to use nanotechnology to create a patented CBN coating called Tufftek that will be synthesized using a proprietary procedure and is anticipated to displace traditional vapor deposition procedures. The coating application has a tough stage and a soft period, both of which join to form a nodular feel which mimics that of a lotus leaf.

About Tufftek

TuffTek is a nanocomposite coating that’s applied to carbide inserts and tools enabling these tools to cut more efficiently and last longer than superior cutting tools on the market today. TuffTek coated tools can enhance tool life more or 300% compared to conventional coatings. The blend of exceptional wear resistance and great toughness makes TuffTek coated tools a better tool than any other currently on the market. TuffTek coated cutting tools can reach wear life beyond conventionally coated tools and may even approach the wear life offered by polycrystalline cubic boron nitride (PCBN) streamlined tools.

Benefits of TuffTek

Since CBN has proven to be extremely hard to reliably deposit using conventional techniques like physical vapor deposition and chemical vapor deposition. NanoMech’s patented and patent-pending coating procedures distinctively solve the difficulties connected with creating CBN based coatings. Over 100 million gallons of cutting fluid are used annually in the US alone, all of which must be disposed of as waste. This amount can be possibly reduced by Tufftek. The application of Tufftek coating will not need sharpening which not only reduces costs but also removes disposal and the use of chemical substances.

About NanoMech

Arkansas based NanoMech was founded in 2002 by the business’s Chief Technology Officer Dr. Ajay Malshe based on a coating technology initiated by Dr. Malshe and exclusively licensed from the University of Arkansas. In 2008, Mr. James M. Phillips joined as Chairman, and gathered a Board of Directors including Christopher Galvin, former Chairman and CEO of Motorola. An investment round followed soon afterwards to finance the multiple award winning TuffTek® NanoSpray coatings which deposit ultra-tough particles onto surfaces of cutting tools and are promised to function as world’s most outstanding coatings for such uses. NanoMech has a 9000 sq. ft. production facility and an 8000 sq. ft. R&D facility, both found in Arkansas.

For more information visit